Innovations in Vascular Access

Jan Tordoir, Maastricht

1^e Post WoCoVA De patiënt centraal

9 oktober 2018 De Eenhoorn in Amersfoort

Innovations in Vascular Access

What is new?!

- Preoperative strategy for the best location
- Insertion techniques and improvements
- New catheter designs
- Optimal catheter maintainance
- Complication diagnosis & management

Classification of central catheters

PICC

peripheral inserted central catheters

insertion in arm veins (brachialis, basilica, axillaris, cephalica)

<u>CICC</u>

central inserted central catheters insertion in **supra/infraclaviculaire veins** (int & ext jugularis, subclavia, brachio-cephalica, axillaris, cephalica)

FICC

femoral inserted central catheters insertion in **groin & thigh veins** (femoralis com, femoralis sup, saphena)

Preoperative strategy for the best catheter location

ZIM = Zone Insertion Method PICC lines

ZONE INSERTION METHOD (ZIM)

3 x 7 cm zones Green zone most ideal

ZIM = Zone Insertion Method CICC lines

Anatomical landmarks

ZIM = Zone Insertion Method CICC lines

Rapid Central Veins Assessment (RaCeVA)

Rapid Peripheral Veins Assessment (RaPeVA)

Mid Neck IJV + CA + TYROID

Subclavian vein (supraclavicular) Subclavian artery

Bottom NECK IJV (+ valves) + SA

Infraclavicular (short axis) Axillary vein and artery Cephalic vein

Brachiocephalic vein

Infraclavicular (long axis) Axillary vein and artery Cephalic vein

Strategy for best insertion technique/location

Minimize the trauma to the vein wall

Use ultrasound to increase first-attempt success Use micro-introducer kits when feasible Stabilize the catheter to reduce further trauma to the vein wall

Minimize the reduction of residual blood flow

Match properly the catheter size with the vein size. To be 'in the safe zone', a 33% rule is recommended: outer diameter of the catheter (Fr) equal or inferior to inner diameter of the vein (mm)

 Locate the tip of the catheter (specifically for central catheters) so that it may be in a high flow vein and in the middle of the flow
 Use an appropriate method of confirmation of tip location (for central catheters)

Mid thigh femoral vein CVC (FICC)

Indications

Superior vena cava syndrome

Deep Vein Thrombosis to other upper extremity veins (e.g. axillary, subclavian, jugular, brachiocephalic)

Paresis, contractures, amputation or circulatory impairment to upper extremities; certain neurology patients, advanced Parkinson's, multiple sclerosis, Amyotrophic Lateral Sclerosis

Arteriovenous fistula to upper extremity

Trauma, surgery or tumors with impairment or limitations to circulation Cervical/neck trauma or upper extremity abnormal venous anatomy High risk coagulopathy, hemophilia or thrombocytopenia Bilateral mastectomy Pacemaker, acute or tunneled catheter

subcutaneously implanted port, defibrillator, or

SVC Filter

Inability to lie supine for supraclavicular insertion

Claustrophobia under full body drape Skin conditions or infection impairing upper extremities

Chronic conditions where no veins in upper extremities are suitable as in sickle cell and cystic fibrosis Inadequate upper extremity vein size

- Easy to perform
- Lower procedural complications
- Uncooperative patient
- Dependable access for lessexperienced operators
- Decreased Insertion Related Risks
- Decreased Infection Risk

FICC in v saphena magna

Exit site in red zone!

		²/ ₃ r	nm	$1^{1}/_{3}$	mm	2 m	m	$2^{2}/_{3}$	mm
Flow Model (Nifong, 20	Chart 011)	2F Ca Inse	theter rted	4F Cat Inse	theter rted	6F Ca Inse	theter erted	8F Ca Inse	theter rted
Vein and Vein Size	Initial Flow (ml/ min)	Flow Reduction		Flow Reduction		Flow Reduction	-	Flow Reduction	
Cephalic (4mm)	10	5ml	48% remaining	3ml	28% remaining	1.5ml	14% remaining	0.5ml	0.5% remaining
Brachial (5mm)	25	13ml	53% remaining	9ml	36% remaining	6ml	22% remaining	3ml	12% remaining
Basilic (6 mm)	52	29 ml	56% remaining	21ml	41% remaining	15ml	28% remaining	9ml	18% remaining
Axillary (8m L'ower	risk (100ml on tr	ombo	^{79ml} DSIS	48% remaining	62ml	38% remaining	47ml	28% remaining
Subclavian (10mm)	400	256ml	64% remaining	212ml	53% remaining	175ml	44% remaining	143ml	36% remaining

Midline (green zone)

Axilla insertion (yellow zone

VAD	Advantages: long	g-time use	Osmolality range
PIV	72-96 hrs	Between 5 and 9	Under 600 mOSm/L
Extended dwell PIV	Up to 29 days	Between 5 and 9	Under 600 mOSm/L
Midline	2-4 weeks	Between 5 and 9	Under 600 mOSm/L
PICC	Less than one year	All	All
Non-tunneled CVC	3-7 days	All	All
Tunneled CVC	Greater than 6 wks	All	All
Implantable port	Greater than 1 year Or intermittent use	All	All

Summary

- Lower risk on thrombosis (larger veins)
- Favourable exit site (green zone)
- Lower risk on infection
- Lower risk on migration (cuff PICC)
- Long-term use is possible

Tip navigation and positioning

Electromagnetic methods for tip navigation: which evidence?

Hand-held detectors

CathFinder (*Pharmacia*) CathTrack/Navigator (*Bard, Navion, Vyasis, Corpak*)

Fixed detectors over the chest cage

CathRite (*Micronix*) Sherlock (*Bard*) Sherlock 3CG (*Bard*) coupled with a tip location system VPS Rhythm (*Teleflex*) coupled with a tip location system

Tip navigation by electromagnetic technology

- At present, no anatomical correlation between the detected catheter signal and the surrounding environment are available for any device
- All the systems project the surface detection within the body relying on predictive relationships between the atrial-caval and the chest cage
- Waiting for real-time imaging 3D reconstruction (ultrasound?) of target position to be added to the tracking system

Tip navigation methods

• Ultrasound can confirm catheter position with:

Supraclavicular views Transthoracic echocardiographic views Transoesophageal echocardiographic views

US based tip navigation technique

Ultrasound imaging central venous catheter position

a. Right supraclavicular view of left innominate vein (LIV), right innominate vein (RIV), superior vena cava (SVC), ascending aorta (AoAsc), right pulmonary artery (RPA). The upper vessel wall of the RPA was considered as target zone of the J-tip.

b. Posterior anatomical view of intrathoracic vessels as seen in (a).
Zone A represents the lower SVC with the RPA crossing the base of the SVC.
Zone B represents the junction of both innominate veins and the upper SVC. The left innominate vein lies within Zone C.

c. Venous puncture of IJV.

d. Right supraclavicular view of guidewire in the SVC.

US based tip location technique

US based tip location technique

32 studies on US detection of CVC malposition

- 11 studies in which Vascular US was coupled with TTE +/- CEUS
- In 6 studies advancement of the guidewire was assessed by US
 - In the remaining 26 studies the CVC was visualized by US directly after placement
- US to detect CVC malposition is feasible in 96.8% of cases
- US to detect CVC malposition as a tip location technique has an overall pooled specificity of 98.9 (95% CI: 97.8–99.5) and sensitivity of 68.2 (95% CI: 54.4–79.4)

New devices and techniques

New devices: long peripheral cannule

Short peripheral cannules

 Teflon of PUR Length < 52 mm Insertion technique: 'catheter over needle' – for superficial veins (< 7mm depth)

Long peripheral cannules

 PUR, PE or PEBA Length 6-15 cm Insertion technique: Seldinger ('cannula over guidewire') Also for US-guided access to the deep veins (> 7mm depth)

New devices: long peripheral cannule

• Ultrasound-guided short cannules are suitable for a period of <24-48 hrs

• Ultrasound-guided mini-midlines are ideal for DIVA (Difficult Intra-Venous Access) patients, in acute and elective setting

- Mini-midlines are ideal for an infusion period of 1 to 4 wks
- Traditional midlines (midclaviculair) are ideal for extramural patients

Innovation of catheter material

Innovation of catheter material

Endexo technology is permanent, non-eluting polymer "blended" into the polyurethane from which the catheter is made

	Standard Care	Endexo®	P-VALUE
Aspiration occlusion	12 (16%)	6 (8%)	
Fibrinolysis not attempted	3	2	
Fibrinolysis unsuccessful	2	1	
Resolved with fibrinolysis	7	3	
Complete occlusion	10 (13%)	2 (2.5%)	
Fibrinolysis not attempted	2	1	
Fibrinolysis unsuccessful	2	0	
Resolved with fibrinolysis	6	1	
Pain during treatment (local)	9 (12%)	4 (6%)	
Redness during treatment (local)	8 (11%)	1 (1%)	
TOTAL ALL CAUSE COMPLICATION	23 (77)	7(23)	0.009

A Cost Effectiveness Analysis of Bioflo[®] Compared to PowerPICC Solo[®] Peripherally Inserted Central Catheters The Ottawa Hospital Evaluation

Compared to BioFlo catheters:

- PPS catheters are 51% [OR1.51 (95% CI:1.18,1.93) more likely to suffer an occlusion
- PPS catheters are 67% [OR 1.27(95% CI: 1.27,2.21] more likely to require a thrombolytic (Medicinase/Urokinase)
- Using the linear regression approach for total cost the average insertion of each PPS is expected to cost the hospital \$40.07 more that the BioFlo catheter

PICC-Ports

- No major complications such as pneumothorax etc
- No visible scars
- Less invasive procedure
- Brachial artery easy to compress in case of accidental puncture
- Increased satisfaction and less pain for the patient
- Minimum exposure for the patient

Securement of PICC, CICC and FICC

Sutureless devices + CHG + dressing

Downside of sutureless devices: migration

Prevention of migration and infection

Securacath

Securacath + glue

Securacath + glue + chloorhexidine dressing

Bioseal CVC powder to prevent bleeding and infection

Indirect exit site protection

Patients with risk of catheter migration Subcutane dacron ring PICC line

EXIT SITE INFECTION Redness, induration (hard), and/or tenderness within 2 cm of the catheter exit site; possibly with other signs and symptoms of infection, such as fever or purulent drainage at exit site, concomitant bloodstream infections	NJURY oing: Shallow Ilar lesions; shiny skin : Partial or full tess on blisters	RITATION/CONTACT DERMATITIS change (red, dark, shiny, dull) persisting 30 min. after dressing change (often mimics shape g) and/or burning, itchy skin and/or lesions (macules, papules, vesicles, bullae)	WEEPING/OOZING (Non-infectious) Assess color, consistency, odor, amount and location of exudate
---	--	--	---

Dressing Usage Guide for CVAD Skin Impairment Management

	Skin Injury	Skin	Drainage			Able to	Apply sterile alcohol-free skin barrier film price		
Dressing*	(e.g., tear/blister)	Irritation	Low	Med	High	see site	 If skin damage/drainage is away from the ex 		
Non-adherent non-woven gauze** (if skin intact or topical agent applied)		•	•				site, isolate wound and exudate from exit site: apply absorbent dressing over area of injury and transparent dressing over exit site and		
Transparent film		•				Yes	prepped skin.		
Absorbent clear acrylic		•	•	•	•	Yes	 If exudate leakage, use a different dressing with higher fluid handling capacity 		
Hydrocolloid (do not apply directly on CVAD exit site)		•	•	•					
Foam (silicone or low-tack)	•	•	•	•	•		*Stabilize catheter with securement		
Alginate (also has hemostatic properties)	•			•	•		device/dressing **Does not provide a microbial barrier		
Skin glue (2-octylcyanoacrylate alcohol-free topical bandage) + Cover Dressing	if skin flap can be approximated	1				Yes	***Assess manufacturer's contraindications. Recommend consult wound/skin specialist		
				25			and/or physician.		

Antimicrobial dressing***

J Wound Ostomy Continence Nurs. 2017;44(3):211-220

Dressing*	(e.g., tear/blister)	Irritation	•	Med	High	see site	• If skin damage/drainage is away from the exit	Try Povidone lodine		
Non-adherent non-woven gauze** (if skin intact or topical agent applied)		•					site, isolate wound and exudate from exit site: apply absorbent dressing over area of injury and transparent dressing over areit site and			
Transparent film		•				Yes	prepped skin.			
Absorbent clear acrylic	•	•	•	•		Yes	 If exudate leakage, use a different dressing with higher fluid handling capacity 	Try sterile normal saline		
Hydrocolloid (do not apply directly on CVAD exit site)		•	•	•						
Foam (silicone or low-tack)	•	•	•	•	•		*Stabilize catheter with securement	Fig. 2-Open Application Test		
Alginate (also has hemostatic properties)	•			•			device/dressing **Does not provide a microbial barrier	1. Apply product to forearm		
Skin glue (2-octylcyanoacrylate alcohol-free topical bandage) + Cover Dressing	if skin flap can be approximated					Yes	***Assess manufacturer's contraindications. Recommend consult wound/skin specialist	 Monitor for 30–60 min. Reassess in 3–4 days for signs of dermatitie 		
Antimicrobial dressing***			•		•		and/or physician.	or dermaticia		

Diagnosis and prevention of complications

Pathogenesis of CRBSI and Prevention of extra and intraluminal colonization

Pathogenesis of CRBSI and prevention of extra- and intraluminal colonization

- Needle free connectors are widely used in clinical practice on the hub of vascular catheters
- They are totally effective in preventing needlestick injuries for healthcare workers
- Their effect on the prevention of occlusion depends on their displacement mechanism
- They influence the risk of intraluminal contamination because of poor compliance to desinfection practices and probably because active desinfection practices are not fully standardized

Port Protectors

 The most effective and standardized desinfection for needle free connectors is passive desinfection using port protectors containing desinfecting agents

Antimicrobial dressings for the prevention of catheter-related infections

Silver-alginate dressing versus control, outcon mortality

Cochrane Database Syst Rev. 2016 Mar 23;3:CD011082

Tissue Adhesive for Vascular Access

 Apply adhesive directly to the insertion site to reduce micromovement create a protective barrier/seal around the insertion site reduce leaking/oozing

Enhanced securement of VADs

wound closure by a protective barrier minimizes oozing at puncture site infection prevention by immobilizing and killing bacteria

Ruling out pulmonary complications with US

pneumothorax

pleural fluid

fibrin sleeve

Innovations in vascular access

Modern US application in the field of VA is not only limited to US-guided venipuncture but it can be extended to assist all steps of VA

- Choice of appropriate vein and proper approach
- Prevention of malposition
- Ultrasound 'tip navigation' technique
- Ultrasound 'tip location' technique ruling out of respiratory complications
- Detection of CRT or fibrin sleeve